

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-4, April 2015

 88 www.ijeas.org



Abstract— Day to day the size of data increased enormously.

Big Data concerns large-volume, complex, growing data sets

with multiple, autonomous sources. With the fast development

of networking, data storage, and the data collection capacity.

Big Data is now rapidly expanding in all science and engineering

domains, including physical, biological and bio-medical sciences.

Mining knowledge from the large amount of data is a

challengeable task. Map Reduce is a programming model and an

associated implementation for processing and generating large

data sets. Map reduce is one of the technique to achieve

parallelism. map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the

same intermediate key . Programs written in this functional style

are automatically parallelized and executed on a large cluster of

commodity machines. The run-time system takes care of the

details of partitioning the input data, scheduling the program’s

execution across a set of machines, handling machine failures,

and managing the required inter-machine communication. This

allows programmers without any experience with parallel and

distributed systems to easily utilize the resources of a large

distributed system. In the perspective of clustering, grouping of

similar of objects from big data is a challengeable task .In order

to deal with the problem; many researchers try to design

different parallel clustering algorithms. In this paper, we

propose a parallel K-Medoids clustering algorithm to improve

scalability without noise and efficiency based on Map Reduce.

Index Terms— Clustering: K-Medoids, Hadoop

(HDFS),Map reduce

I. INTRODUCTION

From day to day data size has been increased enormously in

various formats from various sensor devices which are

connected to different applications. The existing algorithms

don’t have the capability to analyze the large amount of data

with different formats. The challenges include in 1.Hardware

configuration 2.algorithm design. To face these challenge

Hardware configuration,storing the data in Hadoop

Distributed File System(HDFS).

HDFS is a file system designed for storing very large files

with streaming data access patterns, running on cluster of

commodity hardware[1].The size of large file may be

hundreds of mega bytes,giga bytes or tera bytes. The total

data is distributed in more number of nodes. Hence instead of

Mr D Lakshmi Srinivasulu, Assistant Professor in CSE Dept,G.Pulla

Reddy Engineering College(Autonomous) Kurnool,AP

 Mr A Vishnuvardhan Reddy, Assistant Professor in CSE Dept,G.Pulla

Reddy Engineering College(Autonomous) Kurnool,AP
 Dr V S Giridhar Akula, Professor and Principal in Methodist College

of Engineering & Technoloy,Hyderabad,Telangana

single system, more number of systems are used to store huge

amount of data.

We can face the challenge “algorithm design” by parallel

processing.Effecient parallel algorithms and implementation

techniques are the key to meet the scalability and

performance.Upto now so many parallel clustering algorithms

[2,3,4].All these algorithms having the following

drawbacks)They assume all objects can reside in main

memory at the same time their parallel systems have provided

restricted programming models and used the restrictions to

parallelize the computation automatically. Both are

prohibitive for very large data sets. So there is a need to

develop parallel clustering algorithms. Hadoop MapReduce

is a software framework for easily writing applications which

process vast amounts of data (multi-terabyte data-sets)

in-parallel on large clusters (thousands of nodes) of

commodty hardware in a reliable, fault-tolerant manner.

The MapReduce framework operates exclusively on <key,

value> pairs, that is, the framework views the input to the job

as a set of <key, value> pairs and produces a set of <key,

value> pairs as the output of the job, conceivably of different

types.The key and value classes have to be serializable by the

framework and hence need to implement the Writable

interface. Additionally, the key classes have to implement the

writablecomparable interface to facilitate sorting by the

framework.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2>

-> reduce -> <k3, v3> (output).

Map Reduce is a framework for

processing parallelizable problems across huge datasets using

a large number of computers (nodes), collectively referred to

as a cluster (if all nodes are on the same local network and use

similar hardware) or a grid (if the nodes are shared across

geographically and administratively distributed systems, and

use more heterogenous hardware). Computational processing

can occur on data stored either in a filesystem (unstructured)

or in a database (structured). MapReduce can take advantage

of locality of data, processing it on or near the storage assets

in order to reduce the distance over which it must be

transmitted.

"Map" step: The master node takes the input, divides it into

smaller sub-problems, and distributes them to worker nodes.

A worker node may do this again in turn, leading to a

multi-level tree structure. The worker node processes the

smaller problem, and passes the answer back to its master

node.

"Reduce" step: The master node then collects the answers to

all the sub-problems and combines them in some way to form

Improving The Scalability And Efficiency Of

K-Medoids By Map Reduce

Mr D Lakshmi Srinivasulu, Mr A Vishnuvardhan Reddy, Dr V S Giridhar Akula

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Grid_Computing
http://en.wikipedia.org/wiki/Filesystem
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Tree_(data_structure)

Improving The Scalability And Efficiency Of K-Medoids By Map Reduce

 89 www.ijeas.org

the output – the answer to the problem it was originally trying

to solve.

In this paper, we adapt K-MEDOIDS algorithm [5] in

MapReduce framework is implemented by Hadoop to make

the clustering method applicable to large scale data. By

applying proper <key, value> pairs, the proposed algorithm

can be parallel executed effectively. We conduct

comprehensive experiments to evaluate the proposed

algorithm. The results demonstrate that our algorithm can

effectively deal with large scale datasets.

The rest of the paper is organized as follows. In Section 2, we

present our parallel K-Medoid algorithm based on

MapReduce framework. Section 3 shows experimental results

and evaluates our parallel algorithm with respect to speedup,

and sizeup. Finally,we offer our conclusions in Section 4.

II. PARALLEL K-MEDOID ALGORITHM BASED ON

MAPREDUCE:

In this section we propose parallel K-MEDOIDS clustering

algorithm based on MapReduce.Initially we give brief

overview of K-Medoids ,later we explain the how mapreduce

will be integrated with the basic K-Medoids.

2.1 K-Medoids Algorithm:

K-Medoids is a representative of object-based technique. It is

a partitioning based on medoid or central objects. The

K-Medoids method is more robust than k-means in the

presence of noise and outliers because a medoid is less

influenced by outliers or other extreme values than mean.

The K-Medoids algorithm is as follows:

Algorithm:K-Medoid algorithm for partitioning based on

central object.

Input: K: number of clusters, D:a data set containing n

objects.

Output set of k clusters.

Method:

1.arbitarly choose k objects in D as the initial representative

objects

2.repeat

 {

 Assign each remaining object to the cluster with the

nearest representative object.

Randomly seslect a non representative object ,Orandom ;

Compute total cost,S,of swapping representative objet,Oj with

Orandom

If S<0 then swap Oj with Orandom to form the new set of k

representative objects;

3.Until no change;

 k-medoid is not sensitive to noisy data and outliers, but it has

high computation cost.If the data size becomes too large, the

computation cost increases extremely. So to overcome this

problem implementing the K-Medoids by map reduce

technique.

2.2 Parallel K-Medoids based on Map Reduce:

As the analysis above-Medoids algorithm can be

implemented by applying the technique MapReduce.The map

function performs the procedure of assigning each sample to

the closest medoid while the reduce function performs the

procedure of updating the new centers.The cost of network

communication will be reduces by using a combiner function

by partial combination of the intermediate values with the

same key within the same map task.

Map-function : The input dataset is stored on HDFS[5] as a

sequence file of <key, value> pairs, each of which represents

a record in the dataset. The key is the offset in bytes of this

record to the start point of the data file, and the value is a

string of the content of this record. The dataset is split and

globally broadcast to all mappers. Consequently, the distance

computations are parallel executed. For each map task,

Parallel K Medoids construct a global variant medoids which

is an array containing the information about medoids of the

clusters. Given the information, a mapper can compute the

closest medoid for each sample. The intermediate values are

then composed of two parts: the index of the closest center

point and the sample information. The map function is shown

in Algorithm 1.

Algorithm 1. map (key, value)

Input: Sample Values

Output: <key’, value’> pair, where the key’ is the index of

the closest center point and value’ is a string comprise of

sample information

1. Construct the sample instance from value;

2. minDis = Double.MAX VALUE;

3. index = -1;

4. For i=0 to centers.length do

dis= ComputeDist(instance, data[i]);

If dis < minDis {

minDis = dis;

index = i;

}

5. End For

6. Take index as key’;

7. Construct value’ as a string comprise of the values of

different dimensions;

8. output < key, value> pair;

9. End

 Step 2 and Step 3 initialize the auxiliary variable minDis and

index ; Step 4 computes the closest center point from the

sample, Step 8 outputs the intermediate results.

Combine-function. After each map task, we apply a

combiner to combine the intermediate results of the same map

task. Here there is no communication cost because

intermediate results are stored in local disk of the host. In the

combine function, we partially sum the values of the points

assigned to the same cluster. In order to calculate the median

value of the objects for each cluster, we should record the

number of samples in the same cluster in the same map task.

The pseudo code for combine function is shown in Algorithm

2.

Algorithm 2. combine (key, C)

Input:Subset of original data,Array C stores the samples

assigned to the same cluster.

Output:Partial Clusters

1.repeat

2.{

3.Assign each remaining object to the cluster with the nearest

representative object.

4.Randomly seslect a non representative

 object ,Orandom ;

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-2, Issue-4, April 2015

 90 www.ijeas.org

5.Compute total cost,S,of swapping

 representative objet,Oj with Orandom

6.If S<0 then swap Oj with Orandom to form

 the new set of k representative objects;

7.number++

7.}Until no change;

Reduce-function.

The input of the reduce function is the data obtained from the

combine function of each host. In reduce function, we can

sum all the samples and compute the total number of samples

assigned to the same cluster. Therefore, we can get the new

medians which are used for next iteration. The reduce

function is shown in Algorithm3.

Algorithm 3. reduce (key, C)

Input: key is the index of the cluster, V is the list of the partial

sums from different host

Output: < key , value> pair, where the key’ is the index of the

cluster, value’ is a string representing the new center

1. Initialize one array record the sum of value of each

dimensions of the samples contained in the same cluster, e.g.

the samples in the list C;

2. Initialize a counter NUM as 0 to record the sum of sample

number in the same cluster;

3. while(C.hasNext()){

Construct the sample instance from C.next();

NUM += number;

4. }

5. Divide the entries of the array by NUM to get the new

median;

6. Take key as key’;

7. Construct value’ as a string comprise of the center’s

coordinates;

8. output < key, value> pair;

9. End

III. EXPERIMENTAL RESULTS

In this section results has been shown of our proposed

algorithm in the sense of size(X axis) and speed (Y-axis).The

data size increases from node1 to node4. Our proposed

algorithm performance better than existing algorithm. The

difference is shown as follows.

IV. CONCLUSION

Many clustering algorithms have been proposed in the last

past decades. These algorithms are having maximum time

complexity once the data size has been increased and also

there is a problem to store big amount of data. To solve these

kind of problems, we propose HDFS technique to store large

amount of data and fast parallel k-medoids clustering

algorithm for speed up the process on the big data.

REFERENCES:

[1] The Hadoop Distributed File System by Konstantin Shvachko ,Hairong

Kuang,sanjay Radia and Robert Chansler.

[2]Ramissen,E.M.,Willet,P:Efficiency of Hierarchial Agglomarative

clustering using the ICL Distributed Array Processor.Journal of

Documentation 45(1),1-24(1989)

[3] Li, X., Fang, Z.: Parallel Clustering Algorithms. Parallel Computing 11,

275–290(1989)

[4] Olson, C.F.: Parallel Algorithms for Hierarchical Clustering. Parallel

Computing21(8), 1313–1325 (1995)

[5] Borthakur, D.: The Hadoop Distributed File System: Architecture and

Design(2007)

[6] Lammel, R.: Google’s MapReduce Programming Model - Revisited.

Science of Computer Programming 70, 1–30 (2008)

[7] Borthakur, D.: The Hadoop Distributed File System: Architecture and

Design (2007)

[8] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. MAD

skills: New analysis practices for big data. In VLDB, 2009.

[9] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins

using mapreduce. SIGMOD, 2010

[10] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E.

Culler, Joseph M. Hellerstein, David Patterson, and Kathy Yelick.

Cluster I/O with River: Making the fast case common. In Proceedings of

the Sixth Workshop on Input/Output in Parallel and Distributed

Systems (IOPADS ’99), pages 10–22, Atlanta, Georgia, May 1999

Author’s Profile

D.Lakshmi Srinivasulu is working as an Assistant

Professor in Department of Computer Science and

Engineering of G. Pulla Reddy Engineering College

(Autonomous), Kurnool, AP,India.. He received

B.Tech degree in CSIT from JNTUH and M.Tech

degrees in CSE from JNTUA. His areas of

interest include Big Data, Data mining . He

attended 2national conferences ,2 international

conference and published 4 international journals.

A Vishnuvardhan Reddy, is working as an

Assistant Professor in Department of Computer

Science and Engineering of G. Pulla Reddy

Engineering College (Autonomous), Kurnool,

India. He received his M.E degree in Software Engineering from Jadavpur

University, Kolkata, India. He received his B.Tech degree in CSE from SVU,

tirupati, India. His area of research is in the design and implementation of

transport layer protocol for vehicular ad-hoc networks

Dr V S Giridhar Akula has obtained PhD in

Computer Science and Engineering from JNTU,

Anantapur.He obtained BE and M Tech degrees

in CSE. He is put up with 22 years of teaching and

2 years industry experience. Presently working as

Professor and Principal at Methodist College of

Engineering and Technology, Abids,Hyderabad,

India. He is a life member of ISTE,

IEEE,IAE,ICES,AIRCC, Member of Computer Science Teacher’s

Association, USA,Member of IAE. He has authored 8 text books and

editorial board member for 8 national and 12 International Journals.

